Plant breeding as a driver of socio-economic and environmental sustainability

Steffen Noleppa (HFFA Research GmbH)

Online event: "Webinar on plant variety protection and UPOV 1991" 10/06/2021

Content

- Ex-post evaluation (2000–2019):
 - → Yield developments and importance of plant breeding for EU productivity growth
 - → Modelling results referring to the year 2020
- Ex-ante assessment (2020–2039)
- Case study analyses for the impact of New Plant Breeding Techniques (NPBT)
- Recommendations for private business and policy-making

The socio-economic and environmental values of plant breeding in the EU and for selected EU member states

Steffen Noleppa, Matti Cartsburg

The socio-economic and environmental values of plant breeding in the EU were calculated for effects on ...

- Yield growth
- Market supply
- Market prices
- Food availability
- Trade
- Sector / farm income

- GDP
- Jobs
- Land use / net virtual land trade
- GHG emissions
- Biodiversity
- Water use

Plant breeding is responsible for approximately 66 percent of annual productivity growth

Plant breeding-induced vs. real yield growth per year

- Shares of plant breeding in innovation-induced yield growth are between 59 and 75 percent.
- On average, weighted by hectare:
 - → 1.16 percent per annum productivity growth through plant breeding.
- Plant breeding has a tremendous impact on EU arable farming.

Plant breeding is responsible for approximately 66 percent of annual productivity growth

Plant breeding-induced yield growth by member state

 Plant breeding-induced yield growth is below EU average in many "old" EU member states.

- Hence, it is likely (well) above average in "new" member states.
- Why? EU accession in/after 2005:
 - → Improved market access
 - → Increased incentives (PBR, royalty fees, etc.)

Without 20 years of plant breeding in the EU yields would be more than 20 percent lower

Yield shock (2020) w/o EU plant breeding (2000-2019)

- Without 20 years of plant breeding, yields in EU arable farming today would be significantly lower.
- On average, hectare-weighted, a minus of 20.6 percent would have occurred.
- Considerable amounts of wheat, corn, etc. would be missing!

Without 20 years of plant breeding the EU would become a major net importer

Net trade with and w/o plant breeding (in million tons)

- Without 20 years of plant breeding, the EU would become a net importer in all arable crops:
 - →including wheat and other cereals
- International competitors would gain in competitiveness and increase their market shares.

Without 20 years of plant breeding EU arable farmers would have a considerably lower income

Income with and w/o plant breeding (in 1,000 EUR/AWU)

- Without 20 years of plant breeding, the current annual income of an EU arable farmer would be 6,100 EUR lower (i.e., one third of 17,100 EUR).
- In terms of the agricultural value added, approximately
 14 billion EUR would be missing today.

Without 20 years of plant breeding in the EU 22 million hectares of additional land would be needed

Additional global land use w/o plant breeding in the EU

 Without 20 years of plant breeding scarce global resources would additionally be exploited:

 \rightarrow N. Am.: 2.4 million ha

 \rightarrow S. Am.: 1.8 million ha

 \rightarrow Asia: 2.9 million ha

 \rightarrow MENA: 3.6 million ha

 \rightarrow SSA: 2.3 million ha

→ Oceania: 2.7 million ha

 \rightarrow CIS: 5.3 million ha

 \rightarrow RoW: 0.5 million ha

Without 20 years of plant breeding in the EU almost 4 billion tons of additional GHG would have been emitted

Avoided global GHG emissions due to EU plant breeding (in million tons of CO₂-equivalents)

- Almost 4.0 billion tons of CO₂ emissions did not occur due to avoided land use effects:
 - → Being a one-time-only effect, it equals 4-5 times the annual German GHG emissions.
 - → Annualised it is as large as the yearly GHG emissions of The Netherlands.

20 years of plant breeding in the EU helped avoid significant biodiversity losses

Avoided global biodiversity losses due to EU plant breeding (in million biodiversity "points")

- 830 million "points" are equal to biodiversity found in 8.3 million hectares of Brazilian habitats:
 - → Compensation for 11 years of deforestation/savannah loss.
- Similarly, 1,180 "points" are equal to biodiversity found in 11.8 million hectares of habitats in Indonesia:
 - → Compensation for 26 years of deforestation/grassland loss.

Summary on plant breeding values

- Plant breeding increases yields.
- Plant breeding adds further improvements.
- By doing so, plant breeding:
 - → Increases **economic** prosperity
 - → Strengthens **social** livelihood
 - → Protects **environmental** assets

- Plant breeding supports sustainability!
- Plant breeding should speed up!

The socio-economic and environmental values of plant breeding in the EU and for selected EU member states

Steffen Noleppa, Matti Cartsburg

NPBT can speed up breeding and help achieve goals with respect to economic and environmental sustainability

Scenario:

- → Conservative calculation: Saving two years of variety development
- → Speed up plant breeding progress per time unit by 18 percent
- → Not only 1.16 but 1.34 percent plant breeding-induced yield progress per annum in few years from now
- → Until 2040: an extra yield increase of 2.6 percent

Positive effects:

- → Provide extra food for almost 20 million more humans
- → Avoid global GHG emissions of roundabout 350 million tons
- → Preserve biodiversity living in about2.0 million hectares (global average)

→ Various contributions towards meeting the objectives of various strategies of the EU as well as the SDGs

NPBT can help reduce the number of fungicide applications in wheat by fungi-resistant varieties

Avoidable fungicide applications in wheat (in millions) •

- Example PILTON:
 - → Breeding for multiple fungiresistance
 - → May avoid fungicide application
- Assumptions:
 - → One (two) application(s) less per season at current acreage
- Potential effects at EU level:
 - → Up to 25 million applications less in EU wheat alone
 - → Thousands of tons of fungicides can be substituted.

NPBT can help avoid pre-harvest losses in oilseed rape by increasing pod shatter resistance in new varieties

Avoidable land use for oilseed rape (in 1,000 hectares) •

- Example Project John Innes Centre:
 - → Breeding for reduced susceptibility to pod shattering
 - → May avoid seed losses and subsequent voluntary seeds
- Assumptions:
 - → Avoid yield losses of 9.0 percent
- Potential effects at EU level:
 - → 500,000 hectares are almost one tenth of currently used area
 - → Lower pressure on land supports e.g. mitigation of GHG emissions

Recommendations

For private decision–making:

- → Plant breeding is an extremely important area of R&D, and plant breeders must take responsibility by investing even more into innovation.
- → Targets: higher yields but also, e.g., resistances, agronomic traits, orphan crops etc.

For public decision–making:

- → Must encourage and not hinder plant breeders to further invest
- → Strengthen R&D as well as fundamental research
- → Support public awareness raising through interdisciplinary research and evidence-based information campaigns
- → Establish differentiated regulatory framework based on proportionate and non-discriminatory safety considerations
- → Enforcement of plant breeders' rights to assure future innovation and benefits

Photo – © Thaut Images – stock.adobe.com

www.hffa-research.com

